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1 Representations and Maschke’s Theorem

1.1 Representations

Let F be a field, G be a group, and V be a finite dimensional vector space. An F [G]-
module structure on V is the same as a homomorphism ρ : G toAutF (V ). IF V = Fn,
then AutF (V ) ∼= GLn(F ) by choosing the standard basis.

Definition 1.1. A representation of G over F (or an F -representation of G) is an
F -vector space V together with a homomorphism ρ : G|toAutF (V ).

We sometimes write ρV to denote the homomorphism associated to the representation
V .

Example 1.1. If G ≤ GLn(F ), then the inclusion homomorphism ρ : G → GLn(F ) is
a representation. Then GLn � Fn by left multiplication, and this restricts to an action
G � Fn.

Example 1.2. We have the permutation representation Sn → GLn(Z)→ GLn(F ), which
sends a permutation to its associated permutation matrix.

Example 1.3. We have ρ : R→ GL2(R) given by

ρ(θ) =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
.

Definition 1.2. The trivial representation is F with the trivial G-action: ρ : G→ F×

sends g 7→ 1.

Definition 1.3. The regular representation is F [G] as a left F [G] module.

If G is finite, then the dimension of the representation is |G|.
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Definition 1.4. Two representations are isomorphic (or conjugate) if their underlying
F [G]-modules are isomorphic: ρw(g) = ϕ ◦ ρV (g) ◦ ϕ−1

V W

Fn Fn

ϕ

ρV ρW

We can speak or representations being irreducible (simple), semisimple, or indecom-
posable.

Definition 1.5. A subrepresentation is an F [G]-submodule.

Example 1.4. 1-dimensional representations are irreducible.

Example 1.5. Let Dp = 〈r, s〉, where p is prime be a dihedral group. We have the
representation ρ : Dp → GL2(Fp) sending

ρ(s) =

[
−1 0
0 1

]
, ρ(r) =

[
1 1
0 1

]
.

This is injective, so the representation is faithful.
The representation ρ is indecomposable but not irreudcible: Fp ·e1 is Fp[Dp]-stable, but

it does not have a complement. Any v /∈ Fp · e1 spans F2
p as an Fp[Dp]-module.

1.2 Maschke’s theorem and decomposition into irreducible representa-
tions

Theorem 1.1 (Maschke). Let G be a finite group, let F be a field of char - |G|, and let V
be an F -representation of G. Then every subrepresentation of V is a direct summand.

Proof. Suppose W ⊆ V is a subrepresentation. If B′ is a basis of W , extend it to a basis
B of B. Now define the projection of F -vector spaces p : V → W sending p(b) = b if
b ∈ B′ and p(b) = 0 if b /∈ B′. To make this into an F [G]-module homomorphism, define
π : V →W by

π(v) =
1

|G|
∑
g∈G

g−1p(gv).

This is F -linear. Reindexing by k = hg, we get

π(hv) =
1

|G|
∑
g∈G

g−1p(ghv) =
1

|G|
∑
k∈G

(hk−1)p(kv) = hπ(v),

so π is an F [G]-module homomorphism. We claim that this π splits the inclusion W → V .
To see this, for w ∈W ,

π(w) =
1

|G|
∑
g∈G

g−1gw = w.

Since π splits W → V , W is a direct summand.
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Corollary 1.1. If G is finite and Char(F ) - |G|, then F [G] ∼=
∏k
i=1Mni(Di), where Di is a

finite dimensional division algebra with center a finite extension of F . If F is algebraically
closed, then F [G] ∼=

∏k
i=1Mni(F ).

Example 1.6. We have Q[Z/pZ] ∼= Q[x]/(xp − 1) ∼= Q×Q[x]/(Φp) ∼= Q×Q(ζp).

Example 1.7. Since C is algebraically closed, we have C[Z/pZ ∼= Cp.

Example 1.8. On the other hand, Fp[Z/pZ] ∼= Fp[x]/(xp−1) ∼= Fp[x]/(x−1)p ∼= Fp[y]/(y)p.

Let F be finite, char(F ) - |G|, and F be algebraically closed. Then we have F [G] ∼=∏
−i = 1kMni(F ), and there exist k isomorphism classes of irreducible representations

Vi ∼= Fni . As F [G]-modules, we have F [G] ∼= V n1
1 ⊕ · · · ⊕ V nk

k as F [G]-modules. so

|G| =
∑k

i=1 n
2
i , where ni = dimF (Vi).

Proposition 1.1. Given as above, k is the number of conjugacy classes in G.

Proof. Z(Mni(F )) = F , so dimF (Z(F [G])) = k. Denote Cg as the conjugacy class of
g ∈ G. Let Ng =

∑
h∈Cg

h ∈ F [G]. If g 6∼ h, then Ng, Nh are F -linearly independent. Also

observe that G � F [G] by conjugation: h(
∑
agg)h−1 =

∑
agghg

−1. The invariant group
under this action is Z(F (G)). Since Ng is fixed by this action, NG ∈ Z(F [G]). So k ≥ the
number of conjugacy classes.

If z =
∑
agg ∈ Z(F [G]) and h ∈ G, then z =

∑
g aghgh

−1 =
∑

g ah−1ghg, so ag =
ah−1gh for all k. So ag is constant on conjugacy classes. So z ∈ spanF ({NG}). So k is the
number of conjugacy classes.

Definition 1.6. If V and W are representations of G with V semisimple and W irreducible,
then the multiplicity of W in B is the largest n such that Wn ⊆ B.

Example 1.9. The group S3 = {e}∪ {(1 2), (1 3), (2 3)}∪ {(1 2 3), (1 3 2)} has 3 conjugacy
classes. We have n21+n22+n23 = |S3| = 6, so n1 = n2 = 1, and n3 = 2 (or some permutation
of this). Then C[S3] ∼= C× C×M2(C).

We have the trivial representation S3 → C× sending σ 7→ 1 and the sign represen-
tation sgn : S3 → C× sending σ 7→ sgn(σ). What is the third representation? We
know the permutation representation S3 toGL3(C); this has dimension 3, so it is not
irreducible. On the other hand, it is not abelian, so it cannot just contain copies of our
two previous 1-dimensional representations. So we can consider the subrepresentation
W = 〈e1 − e2, e2 − e3〉. Check that if τ = (1 2), then

τ(e1 − e2) = e1 − e2, τ(e2 − e3) = (e1 − e2) + (e2 − e3)

=⇒ ρW (τ) =

[
−1 1
0 1

]
.
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If σ = (1 2 3), then

σ(e1 − e2) = e2 − e3, σ(e2 − e3 = e3 − e1 = −(e− 1− e2)− (e2 − e3)

=⇒ ρW (σ) =

[
0 −1
1 −1

]
.

Check that these matrices do not commute. So W is the 2-dimensional irreducible rep-
resentation we are looking for. These are all Q-representations, as well, so Q[S3] ∼=
Q×Q×M2(Q).
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